Search Ebook here:


Electricity and Magnetism 3rd Edition



Electricity and Magnetism 3rd Edition PDF

Author: Edward M. Purcell and David J. Morin

Publisher: Cambridge University Press

Genres:

Publish Date: January 21, 2013

ISBN-10: 9781107014022

Pages: 853

File Type: PDF

Language: English

read download

Book Preface

For 50 years, Edward M. Purcell’s classic textbook has introduced students to the world of electricity and magnetism. This third edition has been brought up to date and is now in SI units. It features hundreds of new examples, problems, and figures, and contains discussions of real-life applications.

The textbook covers all the standard introductory topics, such as electrostatics, magnetism, circuits, electromagnetic waves, and electric and magnetic fields in matter. Taking a nontraditional approach, magnetism is derived as a relativistic effect. Mathematical concepts are introduced in parallel with the physical topics at hand, making the motivations clear. Macroscopic phenomena are derived rigorously from the underlying microscopic physics.

With worked examples, hundreds of illustrations, and nearly 600 end-of-chapter problems and exercises, this textbook is ideal for electricity and magnetism courses. Solutions to the exercises are available for instructors at www.cambridge.org/Purcell-Morin.
EDWARD M. PURCELL (1912–1997) was the recipient of many awards for his scientific, educational, and civic work. In 1952 he shared the Nobel Prize for Physics for the discovery of nuclear magnetic resonance in liquids and solids, an elegant and precise method of determining the chemical structure of materials that serves as the basis for numerous applications, including magnetic resonance imaging (MRI). During his career he served as science adviser to Presidents Dwight D. Eisenhower, John F. Kennedy, and Lyndon B. Johnson.

This revision of “Electricity and Magnetism,” Volume 2 of the Berkeley Physics Course, has been made with three broad aims in mind. First, I
have tried to make the text clearer at many points. In years of use teachers and students have found innumerable places where a simplification or reorganization of an explanation could make it easier to follow. Doubtless some opportunities for such improvements have still been missed; not too many, I hope.

A second aim was to make the book practically independent of its companion volumes in the Berkeley Physics Course. As originally con
ceived it was bracketed between Volume I, which provided the needed special relativity, and Volume 3, “Waves and Oscillations,” to which was allocated the topic of electromagnetic waves. As it has turned out, Volume 2 has been rather widely used alone. In recognition of that I have made certain changes and additions. A concise review of the relations of special relativity is included as Appendix A. Some previous introduction to relativity is still assumed. The review provides a handy reference and summary for the ideas and formulas we need to understand the fields of moving charges and their transformation from one frame to another. The development of Maxwell’s equations for the vacuum has been transferred from the heavily loaded Chapter 7 (on induction) to a new Chapter 9, where it leads naturally into an elementary treatment of plane electromagnetic waves, both running and standing. The propagation of a wave in a dielectric medium can then be treated in Chapter 10 on Electric Fields in Matter.

A third need, to modernize the treatment of certain topics, was most urgent in the chapter on electrical conduction. A substantially rewritten Chapter 4 now includes a section on the physics of homogeneous semiconductors, including doped semiconductors. Devices are not included, not even a rectifying junction, but what is said about bands, and donors and acceptors, could serve as starting point for development of such topics by the instructor. Thanks to solid-state electronics the physics of the voltaic cell has become even more relevant to daily life as the number of batteries in use approaches in order of magnitude the world’s population. In the first edition of this book I unwisely chose as the example of an electrolytic cell the one cell—the Weston standard cell—which advances in physics were soon to render utterly obsolete. That section has been replaced by an analysis, with new diagrams, of the lead-acid storage battery—ancient, ubiquitous, and far from obsolete.

One would hardly have expected that, in the revision of an elementary text in classical electromagnetism, attention would have to be paid to
new developments in particle physics. But that is the case for two questions that were discussed in the first edition, the significance of charge
quantization, and the apparent absence of magnetic monopoles. Observation of proton decay would profoundly affect our view of the first question. Assiduous searches for that, and also for magnetic monopoles, have at this writing yielded no confirmed events, but the possibility of such fundamental discoveries remains open.

Three special topics, optional extensions of the text, are introduced in short appendixes: Appendix B: Radiation by an Accelerated Charge; Appendix C: Superconductivity; and Appendix D: Magnetic Resonance.

Our primary system of units remains the Gaussian CGS system. The SI units, ampere, coulomb, volt, ohm, and tesla are also introduced in the text and used in many of the problems. Major formulas are repeated in their SI formulation with explicit directions about units and conversion factors. The charts inside the back cover summarize the basic relations in both systems of units. A special chart in Chapter 11 reviews, in both systems, the relations involving magnetic polarization. The student is not expected, or encouraged, to memorize conversion factors, though some may become more or less familiar through use, but to look them up whenever needed. There is no objection to a “mixed” unit like the ohm-cm, still often used for resistivity, providing its meaning is perfectly clear.

The definition of the meter in terms of an assigned value for the speed of light, which has just become official, simplifies the exact relations among the units, as briefly explained in Appendix E.

There are some 300 problems, more than half of them new.

It is not possible to thank individually all the teachers and students who have made good suggestions for changes and corrections. I fear
that some will be disappointed to find that their suggestions have not been followed quite as they intended. That the net result is a substantial improvement I hope most readers familiar with the first edition will agree.

Mistakes both old and new will surely be found. Communications pointing them out will be gratefully received.
It is a pleasure to thank Olive S. Rand for her patient and skillful assistance in the production of the manuscript.
Edward M. Purcell


Download Ebook Read Now File Type Upload Date
Download here Read Now PDF October 7, 2020

How to Read and Open File Type for PC ?