Search Ebook here:


Mindset Mathematics: Visualizing and Investigating Big Ideas, Grade 3



Mindset Mathematics: Visualizing and Investigating Big Ideas, Grade 3 PDF

Author: Jo Boaler , Jen Munson

Publisher: Jossey-Bass

Genres:

Publish Date: July 31, 2018

ISBN-10: 1119358701

Pages: 256

File Type: Epub

Language: English

read download

Book Preface

I still remember the moment when Youcubed, the Stanford center I direct, was conceived. I was at the Denver NCSM and NCTM conferences in 2013, and I had arranged to meet Cathy Williams, the director of mathematics for Vista Unified School District. Cathy and I had been working together for the past year improving mathematics teaching in her district. We had witnessed amazing changes taking place, and a filmmaker had documented some of the work. I had recently released my online teacher course, called How to Learn Math, and been overwhelmed by requests from tens of thousands of teachers to provide them with more of the same ideas. Cathy and I decided to create a website and use it to continue sharing the ideas we had used in her district and that I had shared in my online class. Soon after we started sharing ideas on the Youcubed website, we were invited to become a Stanford University center, and Cathy became the codirector of the center with me.

In the months that followed, with the help of one of my undergraduates, Montse Cordero, our first version of youcubed.org was launched. By January 2015, we had managed to raise some money and hire engineers, and we launched a revised version of the site that is close to the site you may know today. We were very excited that in the first month of that relaunch, we had five thousand visits to the site. At the time of writing this, we are now getting three million visits to the site each month. Teachers are excited to learn about the new research and to take the tools, videos, and activities that translate research ideas into practice and use them in their teaching.

Low-Floor, High-Ceiling Tasks

One of the most popular articles on our website is called “Fluency without Fear.” I wrote this with Cathy when I heard from many teachers that they were being made to use timed tests in the elementary grades. At the same time, new brain science was emerging showing that when people feel stressed—as students do when facing a timed test—part of their brain, the working memory, is restricted. The working memory is exactly the area of the brain that comes into play when students need to calculate with math facts, and this is the exact area that is impeded when students are stressed. We have evidence now that suggests strongly that timed math tests in the early grades are responsible for the early onset of math anxiety for many students. I teach an undergraduate class at Stanford, and many of the undergraduates are math traumatized. When I ask them what happened to cause this, almost all of them will recall, with startling clarity, the time in elementary school when they were given timed tests. We are really pleased that “Fluency without Fear” has now been used across the United States to pull timed tests out of school districts. It has been downloaded many thousands of times and used in state and national hearings.

One of the reasons for the amazing success of the paper is that it does not just share the brain science on the damage of timed tests but also offers an alternative to timed tests: activities that teach math facts conceptually and through activities that students and teachers enjoy. One of the activities—a game called How Close to 100—became so popular that thousands of teachers tweeted photos of their students playing the game. There was so much attention on Twitter and other media that Stanford noticed and decided to write a news story on the damage of speed to mathematics learning. This was picked up by news outlets across the United States, including US News & World Report, which is part of the reason the white paper has now had so many downloads and so much impact. Teachers themselves caused this mini revolution by spreading news of the activities and research.

How Close to 100 is just one of many tasks we have on youcubed.org that are extremely popular with teachers and students. All our tasks have the feature of being “low floor and high ceiling,” which I consider to be an extremely important quality for engaging all students in a class. If you are teaching only one student, then a mathematics task can be fairly narrow in terms of its content and difficulty. But whenever you have a group of students, there will be differences in their needs, and they will be challenged by different ideas. A low-floor, high-ceiling task is one in which everyone can engage, no matter what his or her prior understanding or knowledge, but also one that is open enough to extend to high levels so that all students can be deeply challenged. In the last two years, we have launched an introductory week of mathematics lessons on our site that are open, visual, and low floor, high ceiling. These have been extremely popular with teachers; they have had approximately four million downloads and are used in 20% of schools across the United States.

In our extensive work with teachers around the United States, we are continually asked for more tasks that are like those on our website. Most textbook publishers seem to ignore or be unaware of research on mathematics learning, and most textbook questions are narrow and insufficiently engaging for students. It is imperative that the new knowledge of the ways our brains learn mathematics is incorporated into the lessons students are given in classrooms. It is for this reason that we chose to write a series of books that are organized around a principle of active student engagement, that reflect the latest brain science on learning, and that include activities that are low floor and high ceiling.

Youcubed Summer Camp

We recently brought 81 students onto the Stanford campus for a Youcubed summer math camp, to teach them in the ways that are encouraged in this book. We used open, creative, and visual math tasks. After only 18 lessons with us, the students improved their test score performance by an average of 50%, the equivalent of 1.6 years of school. More important, they changed their relationship with mathematics and started believing in their own potential. They did this, in part, because we talked to them about the brain science showing that

  • There is no such thing as a math person—anyone can learn mathematics to high levels.
  • Mistakes, struggle, and challenge are critical for brain growth.
  • Speed is unimportant in mathematics.
  • Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics.

All of these messages were key to the students’ changed mathematics relationship, but just as critical were the tasks we worked on in class. The tasks and the messages about the brain were perfect complements to each other, as we told students they could learn anything, and we showed them a mathematics that was open, creative, and engaging. This approach helped them see that they could learn mathematics and actually do so. This book shares the kinds of tasks that we used in our summer camp, that make up our week of inspirational mathematics (WIM) lessons, and that we post on our site.

Before I outline and introduce the different sections of the book and the ways we are choosing to engage students, I will share some important ideas about how students learn mathematics.

Memorization versus Conceptual Engagement

Many students get the wrong idea about mathematics—exactly the wrong idea. Through years of mathematics classes, many students come to believe that their role in mathematics learning is to memorize methods and facts, and that mathematics success comes from memorization. I say this is exactly the wrong idea because there is actually very little to remember in mathematics. The subject is made up of a few big, linked ideas, and students who are successful in mathematics are those who see the subject as a set of ideas that they need to think deeply about. The Program for International Student Assessment (PISA) tests are international assessments of mathematics, reading, and science that are given every three years. In 2012, PISA not only assessed mathematics achievement but also collected data on students’ approach to mathematics. I worked with the PISA team in Paris at the Organisation for Economic Co-operation and Development (OECD) to analyze students’ mathematics approaches and their relationship to achievement. One clear result emerged from this analysis. Students approached mathematics in three distinct ways. One group approached mathematics by attempting to memorize the methods they had met; another group took a “relational” approach, relating new concepts to those they already knew; and a third group took a self-monitoring approach, thinking about what they knew and needed to know.

In every country, the memorizers were the lowest-achieving students, and countries with high numbers of memorizers were all lower achieving. In no country were memorizers in the highest-achieving group, and in some high-achieving countries such as Japan, students who combined self-monitoring and relational strategies outscored memorizing students by more than a year’s worth of schooling. More detail on this finding is given in this Scientific American Mind article that I coauthored with a PISA analyst: https://www.scientificamerican.com/article/why-math-education-in-the-u-s-doesn-t-add-up/.

Mathematics is a conceptual subject, and it is important for students to be thinking slowly, deeply, and conceptually about mathematical ideas, not racing through methods that they try to memorize. One reason that students need to think conceptually has to do with the ways the brain processes mathematics. When we learn new mathematical ideas, they take up a large space in our brain as the brain works out where they fit and what they connect with. But with time, as we move on with our understanding, the knowledge becomes compressed in the brain, taking up a very small space. For first graders, the idea of addition takes up a large space in their brains as they think about how it works and what it means, but for adults the idea of addition is compressed, and it takes up a small space. When adults are asked to add 2 and 3, for example, they can quickly and easily extract the compressed knowledge. William Thurston (1990), a mathematician who won the Field’s Medal—the highest honor in mathematics—explains compression like this:

Mathematics is amazingly compressible: you may struggle a long time, step by step, to work through the same process or idea from several approaches. But once you really understand it and have the mental perspective to see it as a whole, there is often a tremendous mental compression. You can file it away, recall it quickly and completely when you need it, and use it as just one step in some other mental process. The insight that goes with this compression is one of the real joys of mathematics.

You will probably agree with me that not many students think of mathematics as a “real joy,” and part of the reason is that they are not compressing mathematical ideas in their brain. This is because the brain only compresses concepts, not methods. So if students are thinking that mathematics is a set of methods to memorize, they are on the wrong pathway, and it is critical that we change that. It is very important that students think deeply and conceptually about ideas. We provide the activities in this book that will allow students to think deeply and conceptually, and an essential role of the teacher is to give the students time to do so.


Download Ebook Read Now File Type Upload Date
Download here Read Now Epub November 4, 2020

How to Read and Open File Type for PC ?