Search Ebook here:

Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer


Author: Michael J. Moran , Howard N. Shapiro, et al.

Publisher: Wiley


Publish Date: September 17, 2002

ISBN-10: 471204900

Pages: 576

File Type: PDF

Language: English

read download

Book Preface

Our objective is to provide an integrated introductory presentation of thermodynamics, fluid mechanics,
and heat transfer. The unifying theme is the application of these principles in thermal systems engineering. Thermal systems involve the storage, transfer, and conversion of energy. Thermal systems engineering is concerned with how energy is utilized to accomplish beneficial functions in industry, transportation, the home, and so on.
Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer is intended for a three- or four-credit hour course in thermodynamics, fluid mechanics, and heat transfer that could be taught in the second or third year of an engineering curriculum to students with appropriate background in elementary physics and calculus. Sufficient material also is included for a two-course sequence in the thermal sciences. The book is suitable for self-study, including reference use in engineering practice and preparation for professional engineering examinations. SI units are featured but other commonly employed engineering units also are used.
The book has been developed in recognition of the team-oriented, interdisciplinary nature of engineering practice, and in recognition of trends in the engineering curriculum, including the move to reduce credit hours and the ABET-inspired objective of introducing students to the common themes of the thermal sciences. In conceiving this new presentation, we identified those critical subject areas needed to form the basis for the engineering analysis of thermal systems and have provided those subjects within a book of manageable size.
Thermodynamics, fluid mechanics, and heat transfer are presented following a traditional approach that is familiar to faculty, and crafted to allow students to master fundamentals before moving on to more challenging topics. This has been achieved with a more integrated presentation than available in any other text. Examples of integration include: unified notation (symbols and definitions); engaging case-oriented introduction to thermodynamics, fluid mechanics, and heat transfer engineering; mechanical energy and thermal energy equations developed from thermodynamic principles; thermal boundary layer concept as an extension of hydrodynamic boundary layer principles; and more.
Features especially useful for students are:
• Readable, highly accessible, and largely self-instructive presentation with a strong emphasis on engineering applications. Fundamentals and applications provided at a digestible level for an introductory course.

• An engaging, case-oriented introduction to thermal systems engineering provided in Chapter 1. The chapter describes thermal systems engineering generally and shows the interrelated roles of thermodynamics, fluid mechanics, and heat transfer for ana-lyzing thermal systems.
• Generous collection of detailed examples featuring a structured problem-solving approach that encourages systematic thinking.
• Numerous realistic applications and homework problems. End-of-chapter problems classified by topic.
• Student study tools (summarized in Sec. 1.4) include chapter introductions giving a clear statement of the objective, chapter summary and study guides, and key terms provided in the margins and coordinated with the text presentation.
• A CD-ROM with hyperlinks providing the full print text plus additional content, answers to selected end-of-chapter problems, short fluid flow video clips, and software for solving problems in thermodynamics and in heat transfer.

Download EbookRead NowFile TypeUpload Date
downloadreadPDFMay 30, 2020

Do you like this book? Please share with your friends, let's read it !! :)

How to Read and Open File Type for PC ?