Search Ebook here:


College Physics 9th Edition



 PDF

Author: Raymond A. Serway and Chris Vuille

Publisher: Cengage Learning

Genres:

Publish Date: January 1, 2011

ISBN-10: 840062060

Pages: 1152

File Type: PDF

Language: English

read download

Book Preface

College Physics is written for a one-year course in introductory physics usually taken by students majoring in biology, the health professions, and other disciplines including environmental, earth, and social sciences, and technical fields such as architecture. The mathematical techniques used in this book include algebra, geometry, and trigonometry, but not calculus. Drawing on positive feedback from users of the eighth edition, analytics gathered from both professors and students who use Enhanced WebAssign, as well as reviewers’ suggestions, we have refined the text to better meet the needs of students and teachers.

This textbook, which covers the standard topics in classical physics and twentieth-century physics, is divided into six parts. Part 1 (Chapters 1–9) deals with Newtonian mechanics and the physics of fluids; Part 2 (Chapters 10–12) is concerned with heat and thermodynamics; Part 3 (Chapters 13 and 14) covers wave motion and sound; Part 4 (Chapters 15–21) develops the concepts of electricity and magnetism; Part 5 (Chapters 22–25) treats the properties of light and the field of geometric and wave optics; and Part 6 (Chapters 26–30) provides an introduction to special relativity, quantum physics, atomic physics, and nuclear physics.

Objectives

The main objectives of this introductory textbook are twofold: to provide the student with a clear and logical presentation of the basic concepts and principles of physics, and to strengthen an understanding of the concepts and principles through a broad range of interesting applications to the real world. To meet those objectives, we have emphasized sound physical arguments and problem-solving methodology. At the same time we have attempted to motivate the student through practical examples that demonstrate the role of physics in other disciplines.

Changes to the Ninth Edition

A large number of changes and improvements have been made in preparing the ninth edition of this text. Some of the new features are based on our experiences and on current trends in science education. Other changes have been incorporated in response to comments and suggestions offered by users of the eighth edition and by reviewers of the manuscript. The features listed here represent the major changes in the eighth edition.
Analytics from Enhanced WebAssign Used
to Revise Questions and Problems
As part of the revision of the questions and problems sets, the authors utilized
extensive user analytics gathered by WebAssign, from both instructors who assigned and students who worked on problems from previous editions of College Physics. These analytics helped tremendously, indicating where the phrasing in problems could be clearer, and providing guidance on how to revise problems so they were more easily understandable for students and more easily assignable in Enhanced WebAssign. Finally, the analytics were used to ensure that the problems most often assigned were retained for this new edition. In each chapter’s problems set, the top quartile of problems that were assigned in WebAssign have blue-shaded problem numbers for easy identification, allowing professors to quickly and easily find the most popular problems that were assigned in Enhanced WebAssign.

Integration with Enhanced WebAssign
The textbook’s tight integration with Enhanced WebAssign content facilitates an online learning environment that helps students improve their problem-solving skills and gives them a variety of tools to meet their individual learning styles. New to this edition, Master It tutorials help students solve problems by having them work through a stepped-out solution. Problems with Master It tutorials are indicated in each chapter’s problem set with a icon. In addition, Watch It solution videos explain fundamental problem-solving strategies to help students step through selected problems. The problems most often assigned in Enhanced Web-Assign (shaded in blue) have feedback to address student misconceptions, helping students avoid common pitfalls.
Thorough Revision of Artwork
Every piece of artwork in the ninth edition was revised in a new and modern style that helps express the physics principles at work in a clearer and more precise fashion. Every piece of art was also revised to make certain that the physical situations presented corresponded exactly to the text discussion at hand.
Also added for this edition is a new feature for many pieces of art: “guidance labels” that point out important features of the figure and guide students through figures without having to go back-and-forth from the figure legend to the figure itself. This format also helps those students who are visual learners. An example of this kind of figure appears below.

 

Content Changes
The text has been carefully edited to improve clarity of presentation and precision of language. We hope that the result is a book both accurate and enjoyable to read. Although the overall content and organization of the textbook are similar to the eighth edition, a few changes were implemented.
â– Chapter 1 (Introduction) The discussion of accuracy of measurements has been improved and Example 1.3, illustrating the use of significant figures, has been greatly expanded.
■Chapter 2 (Motion in One Dimension) For this edition the concept of “path length,” often called (inaccurately) “total distance,” was introduced, as were the conceptual reasons why such a definition (used in mathematics) is important. The general discussion of the concept was also reworked for enhanced clarity. Finally, a new part to Example 2.4 better illustrates the concept of average speed.
â– Chapter 3 (Vectors and Two-Dimensional Motion) New Figures 3.16 and 3.17 explain and illustrate the independence of horizontal and vertical motion. A new part to Example 3.5 shows how to find the direction of motion given the two components of the velocity vector, while a new part added to Example 3.10 better shows how to handle relative motion in one dimension.

■Chapter 4 (The Laws of Motion) New Figures 4.3 and 4.5 illustrate the first and second laws of motion, respectively. Example 4.3 on Newton’s law of gravitation now introduces the concept of tidal forces in the example and exercise, all through straightforward calculations. New Example 4.5 illustrates the third law in a simple context. Finally, a new part to Example 4.15 gives an additional example of the system approach.
â– Chapter 5 (Energy) The definitions of work were refined to include the simplest intuitive definition first, followed by two generalizations. The general discussion of work was enhanced, and an additional part added to the first example on work, Example 5.1.
â– Chapter 6 (Momentum and Collisions) Example 6.3 on recoil velocity was thoroughly revised and improved, as was Example 6.5 on the ballistic pendulum.
â– Chapter 7 (Rotational Motion and the Law of Gravity) Example 7.2 on rotational kinematics was extended, allowing the elimination of the now- redundant Example 7.3. Figure 7.10 was reconceptualized and redrawn and now better illustrates the concept of angular velocity. New Figure 7.20 helps the students understand gravitational potential energy.
â– Chapter 8 (Rotational Equilibrium and Rotational Dynamics) New Figures
8.2 and 8.5 help visually explain the ideas behind torque. Example 8.4 on the center of gravity was extended to better illustrate the concept and technique of applying it.
â– Chapter 9 (Solids and Fluids) The sections of Chapter 9 were slightly rearranged so the concept of pressure could be introduced before stress and strain. New Example 9.1 helps the student understand the concept of pressure as well as lay the groundwork for grasping the equation of hydrostatic equilibrium. Example 9.4 on the volume stress-strain problem was significantly upgraded, and now includes the pressure change calculation that causes the change in volume.
â– Chapter 10 (Thermal Physics) New Example 10.9 focuses on a high-energy electron beam, showing how a large number of particle impacts creates an observed macroscopic force and associated pressure.
â– Chapter 11 (Energy in Thermal Processes) New Example 11.8 bears on the conductive losses from the human body. This same example also discusses minke whales in the accompanying exercise. A new, more comprehensive example on insulation was created (Example 11.9), which replaces two example problems that are now redundant.
â– Chapter 12 (The Laws of Thermodynamics) The difference between work done by a gas and work done on a gas was further clarified. New Figure 12.2 compares the concept of work on a gas to the mechanical work done on an object. New Figure 12.5 illustrates the concept of the First Law of Thermodynamics, and is accompanied by further discussion of the first law in a more general context. Finally, Example 12.7 was significantly improved with more parts and a discussion of both monatomic and diatomic gases.
â– Chapter 13 (Vibrations and Waves) Example 13.1 from the eighth edition was switched with Example 13.2 and greatly enhanced with more parts that better show how to handle single and multiple springs and their spring constants.
â– Chapter 14 (Sound) A new and exciting physics application concerns a device that uses ultrasound technology in brain surgery. This device allows surgeons to operate without cutting the skin or opening the skull, reducing many such surgeries to an outpatient procedure.
â– Chapter 16 (Electrical Energy and Capacitance) A new example shows how to handle a capacitor having two dielectric materials layered between the plates. In addition, the summary features new art illustrating the rules for series and parallel combinations of capacitors.
â– Chapter 17 (Current and Resistance) Further explanation of the relationship between moving charges and energy is introduced, better connecting the early part of Chapter 17 with the concepts of electrical energy described in Chapter 16. New parts to Example 17.1 and its exercise reinforce the conceptual development. In addition, a new part was added to both Example 17.6 and its exercise.
â– Chapter 18 (Direct-Current Circuits) Example 18.1 on resistors in series has two new parts and a new exercise. Example 18.3 was revised to improve the clarity of the solution. New art in the summary illustrates the two rules for series and parallel combinations of resistors.
■Chapter 19 (Magnetism) New Example 19.7 shows how to use Ampère’s Law to compute the magnetic field due to a coaxial cable. A new discussion explains the difference between hard and soft magnetic materials and their general applications. Further applications of magnetic fields to directing beams of charged particles have been introduced.
â– Chapter 20 (Induced Voltages and Inductance) This chapter features a clarified discussion of magnetic flux, explaining the concept of the orientation of
a surface and how it relates to the sign of the flux. The discussion of Lenz’s Law in Section 20.2 is thoroughly revised, featuring several examples of the law embedded in the text with diagrams. With the enhanced discussion in Section
20.2 it was possible to eliminate the previous edition’s Section 20.4, resulting in a smoother, more comprehensive presentation of the concept.
■Chapter 21 (Alternating-Current Circuits and Electromagnetic Waves) A new physics application, “Light and Wound Treatment,” describes how irradiating wounds with laser light can accelerate healing. Examples 21.8 and 21.9 were revised.
■Chapter 22 (Reflection and Refraction of Light) The revising of Example 22.2 on Snell’s Law, making it more comprehensive, allowed the elimination of the last edition’s Example 22.4.
â– Chapter 23 (Mirrors and Lenses) A new example combines a thin lens and a spherical mirror.
■Chapter 24 (Wave Optics) A new physics application, “Perfect Mirrors,” explains how dielectric materials can enhance reflectivity. Fibers constructed with this technology can guide light without any significant loss of intensity.
â– Chapter 26 (Relativity) Relative velocity in special relativity, reintroduced in this edition, relates the relativistic treatment to the elementary treatment of relative velocity presented in Chapter 3. The connection with elementary physics will facilitate student understanding of this difficult topic. A new example illustrates the concept and its use.
■Chapter 30 (Nuclear Energy and Elementary Particles) A new discussion on nuclear power and breeder reactors focuses on efforts to extract the nearly limitless supply of uranium dissolved in the world’s oceans. A new section on cosmology includes discussion of dark matter, dark energy, and cosmic inflation, together with new figures.


Download EbookRead NowFile TypeUpload Date
downloadreadPDFMay 30, 2020

Do you like this book? Please share with your friends, let's read it !! :)

How to Read and Open File Type for PC ?