Search Ebook here:


Antenna Engineering Handbook, Fourth Edition



 PDF

Author: John Volakis

Publisher: McGraw-Hill Education

Genres:

Publish Date: June 28, 2007

ISBN-10: 71475745

Pages: 1872

File Type: PDF

Language: English

read download

Book Preface

Antennas are key components of any wireless communication system.1,2 They are the devices that allow for the transfer of a signal (in a wired system) to waves that, in turn, propagate through space and can be received by another antenna. The receiving antenna is responsible for the reciprocal process, i.e., that of turning an electromagnetic wave into a signal or voltage at its terminals that can subsequently be processed by the receiver. The receiving and transmitting functionalities of the antenna structure itself are fully characterized by Maxwell’s equations and are fairly well understood.3 The dipole antenna (a straight wire, fed at the center by a two-wire transmission line) was the first antenna ever used and is also one of the best understood.1,2 For effective reception and transmission, it must be approximately l/2 long (l = wavelength) at the frequency of operation (or multiples of this length). Thus, it must be fairly long (or high) when used at low frequencies (l = 1 m at 300 MHz), and even at higher frequencies (UHF and greater), its protruding nature makes it quite undesirable. Further, its low gain (2.15 dB), lack of directionality, and extremely narrow bandwidth make it even less attractive. Not surprisingly, the Yagi-Uda antenna (typically seen on the roof of most houses for television reception) was considered a breakthrough in antenna technology when introduced in the early 1920s because of its much higher gain of 8–14 dB. Log-periodic wire antennas introduced in the late 1950s and 1960s and wire spirals allowed for both gain and bandwidth increases. On the other hand, even today high gain antennas rely on large reflectors (dish antennas) and waveguide arrays (used for many radar systems). Until the late 1970s, antenna design was based primarily on practical approaches using off-the-shelf antennas such as various wire geometries (dipoles, Yagi-Uda, log-periodics, spirals), horns, reflectors, and slots/apertures as well as arrays of some of these. The antenna engineer could choose or modify one of them based on design requirements that characterize antennas, such as gain, input impedance, bandwidth, pattern beamwidth, and sidelobe levels (see References 4 and 5 for a description of these quantities). Antenna development required extensive testing and experimentation and was, therefore, funded primarily by governments. However, in recent years, dramatic growth in computing speed and development of effective computational techniques for realistic antenna geometries has allowed for low-cost virtual antenna design. Undoubtedly, the explosive growth of wireless communications and microwave sensors, microwave imaging needs, and radars has been the catalyst for introducing a multitude of new antenna designs over the past decade and an insatiable desire for using modern computational techniques for low-cost designs. Requirements for conformal antennas (non-protruding) for airborne systems, increased bandwidth requirements, and multifunctionality have led to heavy exploitation of printed (patch) or other slot-type antennas4 and the use of powerful computational tools (commercial and noncommercial) for designing such antennas.


Download Ebook Read Now File Type Upload Date
Download here Read Now PDF May 30, 2020

How to Read and Open File Type for PC ?